AIGC初步体验 Datawhale X 魔搭夏令营
2025-06-24 11:49:52
来源:新华网
baseline与DataWhale的步骤一起运行。
环境安装。
!pip install simple-aesthetics-predictor!pip install -v -e data-juicer!pip uninstall pytorch-lightning -y!pip install peft lightning pandas torchvision!pip install -e DiffSynth-Studio。
下载数据集。
#下载from的数据集 modelscope.msdatasets import MsDatasetds = MsDataset.load( 'AI-ModelScope/lowres_anime', subset_name='default', split='train', cache_dir="/mnt/workspace/kolors/data")import json, osfrom data_juicer.utils.mm_utils import SpecialTokensfrom tqdm import tqdmos.makedirs("./data/lora_dataset/train", exist_ok=True)os.makedirs("./data/data-juicer/input", exist_ok=True)with open("./data/data-juicer/input/metadata.jsonl", "w") as f: for data_id, data in enumerate(tqdm(ds)): image = data["image"].convert("RGB") image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{ data_id}.jpg") metadata = { "text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{ data_id}.jpg"]} f.write(json.dumps(metadata)) f.write("\n")。
#xfff0处理数据集c;保存数据处理结果。
data_juicer_config = """# global parametersproject_name: 'data-process'dataset_path: './data/data-juicer/input/metadata.jsonl' # path to your dataset directory or filenp: 4 # number of subprocess to process your datasettext_keys: 'text'image_key: 'image'image_special_token: '<__dj__image>'export_path: './data/data-juicer/output/result.jsonl'# process schedule# a list of several process operators with their argumentsprocess: - image_shape_filter: min_width: 1024 min_height: 1024 any_or_all: any - image_aspect_ratio_filter: min_ratio: 0.5 max_ratio: 2.0 any_or_all: any"""with open("data/data-juicer/data_juicer_config.yaml", "w") as file: file.write(data_juicer_config.strip())!dj-process --config data/data-juicer/data_juicer_config.yamlimport pandas as pdimport os, jsonfrom PIL import Imagefrom tqdm import tqdmtexts, file_names = [], []os.makedirs("./data/lora_dataset_processed/train", exist_ok=True)with open("./data/data-juicer/output/result.jsonl", "r") as file: for data_id, data in enumerate(tqdm(file.readlines())): data = json.loads(data) text = data["text"] texts.append(text) image = Image.open(data["image"][0]) image_path = f"./data/lora_dataset_processed/train/{ data_id}.jpg" image.save(image_path) file_names.append(f"{ data_id}.jpg")data_frame = pd.DataFrame()data_frame["file_name"] = file_namesdata_frame["text"] = textsdata_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig")data_frame。
lora微调。
# 下载模型from diffsynth import download_modelsdownload_models(["Kolors", "SDXL-vae-fp16-fix"])#import模型训练 oscmd = """python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ --lora_rank 16 \ --lora_alpha 4.0 \ --dataset_path data/lora_dataset_processed \ --output_path ./models \ --max_epochs 1 \ --center_crop \ --use_gradient_checkpointing \ --precision "16-mixed"""".strip()os.system(cmd)。
加载微调模型。
from diffsynth import ModelManager, SDXLImagePipelinefrom peft import LoraConfig, inject_adapter_in_modelimport torchdef load_lora(model, lora_rank, lora_alpha, lora_path): lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_alpha, init_lora_weights="gaussian", target_modules=["to_q", "to_k", "to_v", "to_out"], ) model = inject_adapter_in_model(lora_config, model) state_dict = torch.load(lora_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) return model# Load modelsmodel_manager = ModelManager(torch_dtype=torch.float16, device="cuda", file_path_list=[ "models/kolors/Kolors/text_encoder", "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors" ])pipe = SDXLImagePipeline.from_model_manager(model_manager)# Load LoRApipe.unet = load_lora( pipe.unet, lora_rank=16, # This parameter should be consistent with that in your training script. lora_alpha=2.0, # lora_alpha can control the weight of LoRA. lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt")。
图片生成(修改提示词)
torch.manual_seed(0)image = pipe( prompt="一只可爱的小象穿着探险帽,穿狩猎服,站在沙漠地面上鼻子高举Pixar的风格 animation。", negative_prompt="丑陋、变形、嘈杂、模糊、低对比度", cfg_scale=4, num_inference_steps=50, height=1024, width=1024,)image.save("1.jpg")。
感觉:感受到提示词的使用,并体验了生成图片的过程,作为一名大一新生,我觉得很新奇。