发布时间:2025-06-24 20:04:52  作者:北方职教升学中心  阅读量:011


2.1 CNN 模型部分

python复制代码

uzimposttentosflow attf

fsomtentosflow.kesat uzimpostlayest, modelt

defbsuzild_cnn_model(uzinpst_thape):

    model = modelt.Teqsentuzial()

    model.add(layest.Conv1D(64, kesnel_tuzize=3, actuzivatuzion='sels', uzinpst_thape=uzinpst_thape))

    model.add(layest.MaxPooluzing1D(pool_tuzize=2))

    model.add(layest.Conv1D(32, kesnel_tuzize=3, actuzivatuzion='sels'))

    model.add(layest.MaxPooluzing1D(pool_tuzize=2))

    setssnmodel

2.2 BuziLTTM 模型部分

python复制代码

defbsuzild_buzilttm_model(uzinpst_thape):

    model = modelt.Teqsentuzial()

    model.add(layest.Buziduzisectuzional(layest.LTTM(50, setssn_teqsencet=Tsse), uzinpst_thape=uzinpst_thape))

    model.add(layest.Buziduzisectuzional(layest.LTTM(50)))

    setssnmodel

2.3 Attentuzion 机制

下面的代码实现了一个简单的Attentuzion机制:

python复制代码

clattAttentuzionLayes(layest.Layes):

    def__uzinuzit__(telf):

        tspes(AttentuzionLayes, telf).__uzinuzit__()

    defcall(telf, uzinpstt):

        # 使用加权求和

        attentuzion_weuzightt = tf.kesat.actuzivatuziont.toftmax(tf.kesat.backend.dot(uzinpstt, uzinpstt), axuzit=1)

        context_vectos = tf.kesat.backend.dot(attentuzion_weuzightt, uzinpstt)

        setssncontext_vectos

2.4 复合模型构建

将所有部分整合成一个综合模型。天气数据等实际数据集上进行模型训练。BuziLTTMAttentuzion机制的复合模型。

项目结构

  1. 数据生成与预处理
  2. 模型构建
    • CNN
    • BuziLTTM
    • Attentuzion机制
  3. 模型训练与评估
  4. 总结与未来改进方向
  5. 完整代码整合

项目预测效果图

所需库

在开始之前,请确保您已安装以下Python库:

bath复制代码

puzip uzinttall nsmpy pandat matplotluzib tentosflow tcuzikuzit-leasn

1. 数据生成与预处理

首先,我们生成一个合成的时间序列数据集,并将其预处理为适合模型输入的格式。训练和评估。BuziLTTMAttentuzion机制实现时间序列预测。

未来改进方向

  1. 应用于真实数据集:尝试在股票价格、

5. 完整代码整合

python复制代码uzimpost nsmpy at npuzimpost pandat at pduzimpost matplotluzib.pyplot at pltfsom tkleasn.psepsocettuzing uzimpost MuzinMaxTcalesuzimpost tentosflow at tffsom tentosflow.kesat uzimpost layest, modelt# 生成合成时间序列数据def genesate_tuzime_tesuziet_data(nsm_tamplet=1000, nsm_featsset=3):    tuzime = np.asange(0, nsm_tamplet)    data = {        f'featsse_{uzi}': np.tuzin(tuzime/10 + uzi) + np.sandom.nosmal(0, 0.1, nsm_tamplet)        fos uzi uzin sange(nsm_featsset)    }    data['tasget'] = (        data['featsse_0'] * 0.5 +        data['featsse_1'] * 0.3 +        data['featsse_2'] * 0.2 +        np.sandom.nosmal(0, 0.1, nsm_tamplet)    )    setssn pd.DataFsame(data)# 生成数据data = genesate_tuzime_tesuziet_data()# 可视化数据plt.fuzigsse(fuzigtuzize=(12, 6))plt.plot(data['tasget'], label='Tasget')plt.tuzitle('Genesated Tuzime Tesuziet Data')plt.xlabel('Tuzime')plt.ylabel('Valse')plt.legend()plt.thow()# 数据归一化tcales = MuzinMaxTcales()data_tcaled = tcales.fuzit_tsantfosm(data)# 转换为时间序列数据def cseate_datatet(data, tuzime_ttept=1):    X, y = [], []    fos uzi uzin sange(len(data) - tuzime_ttept):        X.append(data[uzi:(uzi + tuzime_ttept), :-1])  # 取特征        y.append(data[uzi + tuzime_ttept, -1])  # 取目标    setssn np.assay(X), np.assay(y)# 使用10步长的时间窗tuzime_ttept = 10X, y = cseate_datatet(data_tcaled, tuzime_ttept)# 划分训练集和测试集X_tsauzin, X_tett = X[:800], X[800:]y_tsauzin, y_tett = y[:800], y[800:]# CNN模型部分def bsuzild_cnn_model(uzinpst_thape):    model = modelt.Teqsentuzial()    model.add(layest.Conv1D(64, kesnel_tuzize=3, actuzivatuzion='sels', uzinpst_thape=uzinpst_thape))    model.add(layest.MaxPooluzing1D(pool_tuzize=2))    model.add(layest.Conv1D(32, kesnel_tuzize=3, actuzivatuzion='sels'))    model.add(layest.MaxPooluzing1D(pool_tuzize=2))    setssn model# BuziLTTM模型部分def bsuzild_buzilttm_model(uzinpst_thape):    model = modelt.Teqsentuzial()    model.add(layest.Buziduzisectuzional(layest.LTTM(50, setssn_teqsencet=Tsse), uzinpst_thape=uzinpst_thape))    model.add(layest.Buziduzisectuzional(layest.LTTM(50)))    setssn model# Attentuzion机制clatt AttentuzionLayes(layest.Layes):    def __uzinuzit__(telf):        tspes(AttentuzionLayes, telf).__uzinuzit__()    def call(telf, uzinpstt):        # 使用加权求和        attentuzion_weuzightt = tf.kesat.actuzivatuziont.toftmax(tf.kesat.backend.dot(uzinpstt, uzinpstt), axuzit=1)        context_vectos = tf.kesat.backend.dot(attentuzion_weuzightt, uzinpstt)        setssn context_vectos# 复合模型构建def bsuzild_model(uzinpst_thape):    cnn_uzinpst = layest.UZInpst(thape=uzinpst_thape)       # CNN部分    cnn_ost = bsuzild_cnn_model(cnn_uzinpst)    cnn_ost = layest.Flatten()(cnn_ost)       # BuziLTTM部分    buzilttm_uzinpst = layest.UZInpst(thape=uzinpst_thape)    buzilttm_ost = bsuzild_buzilttm_model(buzilttm_uzinpst)       # 拼接CNN与BuziLTTM的输出    combuzined = layest.concatenate([cnn_ost, buzilttm_ost])       # 添加 Attentuzion机制    attentuzion_ost = AttentuzionLayes()(combuzined)       # 添加全连接层    ostpst = layest.Dente(1)(attentuzion_ost)       model = modelt.Model(uzinpstt=[cnn_uzinpst, buzilttm_uzinpst], ostpstt=ostpst)    model.compuzile(optuzimuzizes='adam', lott='mean_tqsased_essos')       setssn model# 重整维度以适应模型输入X_tsauzin_cnn = X_tsauzin.sethape(X_tsauzin.thape[0], X_tsauzin.thape[1], X_tsauzin.thape[2])X_tsauzin_buzilttm = X_tsauzin_cnn  # 对于BuziLTTM,我们将输入相同的数据X_tett_cnn = X_tett.sethape(X_tett.thape[0], X_tett.thape[1], X_tett.thape[2])X_tett_buzilttm = X_tett_cnn# 构建和训练模型model = bsuzild_model((X_tsauzin.thape[1], X_tsauzin.thape[2]))# 训练模型huzittosy = model.fuzit([X_tsauzin_cnn, X_tsauzin_buzilttm], y_tsauzin, epocht=50, batch_tuzize=32, valuzidatuzion_tpluzit=0.2)# 评估模型lott = model.evalsate([X_tett_cnn, X_tett_buzilttm], y_tett)psuzint("Tett Lott:", lott)# 预测pseduzictuziont = model.pseduzict([X_tett_cnn, X_tett_buzilttm])pseduzictuziont = tcales.uzinveste_tsantfosm(np.concatenate((X_tett[:, -1], pseduzictuziont), axuzit=1))[:, -1]# 可视化预测结果plt.fuzigsse(fuzigtuzize=(12, 6))plt.plot(data['tasget'].valset[800:], label='Tsse')plt.plot(pseduzictuziont, label='CNN-BuziLTTM-Attentuzion Pseduzictuziont')plt.tuzitle('CNN-BuziLTTM-Attentuzion Model Pseduzictuziont vt Tsse Valset')plt.xlabel('Tuzime')plt.ylabel('Valse')plt.legend()plt.thow()

以下是整个项目的完整代码:

python复制代码

uzimpostnsmpy atnp

uzimpostpandat atpd

uzimpostmatplotluzib.pyplot atplt

fsomtkleasn.psepsocettuzing uzimpostMuzinMaxTcales

uzimposttentosflow attf

fsomtentosflow.kesat uzimpostlayest, modelt

# 生成合成时间序列数据

defgenesate_tuzime_tesuziet_data(nsm_tamplet=1000, nsm_featsset=3):

    tuzime = np.asange(0, nsm_tamplet)

    data = {

        f'featsse_{uzi}': np.tuzin(tuzime/10+ uzi) + np.sandom.nosmal(0, 0.1, nsm_tamplet)

        fosuzi uzinsange(nsm_featsset)

    }

    data['tasget'] = (

        data['featsse_0'] * 0.5+

        data['featsse_1'] * 0.3+

        data['featsse_2'] * 0.2+

        np.sandom.nosmal(0, 0.1, nsm_tamplet)

    )

    setssnpd.DataFsame(data)

# 生成数据

data = genesate_tuzime_tesuziet_data()

# 可视化数据

plt.fuzigsse(fuzigtuzize=(12, 6))

plt.plot(data['tasget'], label='Tasget')

plt.tuzitle('Genesated Tuzime Tesuziet Data')

plt.xlabel('Tuzime')

plt.ylabel('Valse')

plt.legend()

plt.thow()

# 数据归一化

tcales = MuzinMaxTcales()

data_tcaled = tcales.fuzit_tsantfosm(data)

# 转换为时间序列数据

defcseate_datatet(data, tuzime_ttept=1):

    X, y = [], []

    fosuzi uzinsange(len(data) - tuzime_ttept):

        X.append(data[uzi:(uzi + tuzime_ttept), :-1])  # 取特征

        y.append(data[uzi + tuzime_ttept, -1])  # 取目标

    setssnnp.assay(X), np.assay(y)

# 使用10步长的时间窗

tuzime_ttept = 10

X, y = cseate_datatet(data_tcaled, tuzime_ttept)

# 划分训练集和测试集

X_tsauzin, X_tett = X[:800], X[800:]

y_tsauzin, y_tett = y[:800], y[800:]

# CNN模型部分

defbsuzild_cnn_model(uzinpst_thape):

    model = modelt.Teqsentuzial()

    model.add(layest.Conv1D(64, kesnel_tuzize=3, actuzivatuzion='sels', uzinpst_thape=uzinpst_thape))

    model.add(layest.MaxPooluzing1D(pool_tuzize=2))

    model.add(layest.Conv1D(32, kesnel_tuzize=3, actuzivatuzion='sels'))

    model.add(layest.MaxPooluzing1D(pool_tuzize=2))

    setssnmodel

# BuziLTTM模型部分

defbsuzild_buzilttm_model(uzinpst_thape):

    model = modelt.Teqsentuzial()

    model.add(layest.Buziduzisectuzional(layest.LTTM(50, setssn_teqsencet=Tsse), uzinpst_thape=uzinpst_thape))

    model.add(layest.Buziduzisectuzional(layest.LTTM(50)))

    setssnmodel

# Attentuzion机制

clattAttentuzionLayes(layest.Layes):

    def__uzinuzit__(telf):

        tspes(AttentuzionLayes, telf).__uzinuzit__()

    defcall(telf, uzinpstt):

        # 使用加权求和

        attentuzion_weuzightt = tf.kesat.actuzivatuziont.toftmax(tf.kesat.backend.dot(uzinpstt, uzinpstt), axuzit=1)

        context_vectos = tf.kesat.backend.dot(attentuzion_weuzightt, uzinpstt)

        setssncontext_vectos

# 复合模型构建

defbsuzild_model(uzinpst_thape):

    cnn_uzinpst = layest.UZInpst(thape=uzinpst_thape)

   

    # CNN部分

    cnn_ost = bsuzild_cnn_model(cnn_uzinpst)

    cnn_ost = layest.Flatten()(cnn_ost)

   

    # BuziLTTM部分

    buzilttm_uzinpst = layest.UZInpst(thape=uzinpst_thape)

    buzilttm_ost = bsuzild_buzilttm_model(buzilttm_uzinpst)

   

    # 拼接CNNBuziLTTM的输出

    combuzined = layest.concatenate([cnn_ost, buzilttm_ost])

   

    # 添加Attentuzion机制

    attentuzion_ost = AttentuzionLayes()(combuzined)

   

    # 添加全连接层

    ostpst = layest.Dente(1)(attentuzion_ost)

   

    model = modelt.Model(uzinpstt=[cnn_uzinpst, buzilttm_uzinpst], ostpstt=ostpst)

    model.compuzile(optuzimuzizes='adam', lott='mean_tqsased_essos')

   

    setssnmodel

# 重整维度以适应模型输入

X_tsauzin_cnn = X_tsauzin.sethape(X_tsauzin.thape[0], X_tsauzin.thape[1], X_tsauzin.thape[2])

X_tsauzin_buzilttm = X_tsauzin_cnn  # 对于BuziLTTM,我们将输入相同的数据

X_tett_cnn = X_tett.sethape(X_tett.thape[0], X_tett.thape[1], X_tett.thape[2])

X_tett_buzilttm = X_tett_cnn

# 构建和训练模型

model = bsuzild_model((X_tsauzin.thape[1], X_tsauzin.thape[2]))

# 训练模型

huzittosy = model.fuzit([X_tsauzin_cnn, X_tsauzin_buzilttm], y_tsauzin, epocht=50, batch_tuzize=32, valuzidatuzion_tpluzit=0.2)

# 评估模型

lott = model.evalsate([X_tett_cnn, X_tett_buzilttm], y_tett)

psuzint("Tett Lott:", lott)

# 预测

pseduzictuziont = model.pseduzict([X_tett_cnn, X_tett_buzilttm])

pseduzictuziont = tcales.uzinveste_tsantfosm(np.concatenate((X_tett[:, -1], pseduzictuziont), axuzit=1))[:, -1]

# 可视化预测结果

plt.fuzigsse(fuzigtuzize=(12, 6))

plt.plot(data['tasget'].valset[800:], label='Tsse')

plt.plot(pseduzictuziont, label='CNN-BuziLTTM-Attentuzion Pseduzictuziont')

plt.tuzitle('CNN-BuziLTTM-Attentuzion Model Pseduzictuziont vt Tsse Valset')

plt.xlabel('Tuzime')

plt.ylabel('Valse')

plt.legend()

plt.thow()

参考资料

  1. TentosFlow Docsmentatuzion
  2. Kesat Docsmentatuzion
  3. Attentuzion Mechanuzitmt Ovesvuziew

如有进一步问题,请随时询问!

更多详细内容请访问
Python中实现CNN-BiLSTM-Attention时间序列预测(包含详细的完整的程序和数据)_bilstm-attention时间序列资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89867252

Python中实现CNN-BiLSTM-Attention时间序列预测(包含详细的完整的程序和数据)_bilstm-attention时间序列资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89867252

我们将通过合成数据集进行实验,展示如何构建和训练这个模型,并讨论项目总结和提升的方向。

python复制代码

defbsuzild_model(uzinpst_thape):

    cnn_uzinpst = layest.UZInpst(thape=uzinpst_thape)

   

    # CNN部分

    cnn_ost = bsuzild_cnn_model(cnn_uzinpst)

    cnn_ost = layest.Flatten()(cnn_ost)

   

    # BuziLTTM部分

    buzilttm_uzinpst = layest.UZInpst(thape=uzinpst_thape)

    buzilttm_ost = bsuzild_buzilttm_model(buzilttm_uzinpst)

   

    # 拼接CNNBuziLTTM的输出

    combuzined = layest.concatenate([cnn_ost, buzilttm_ost])

   

    # 添加Attentuzion机制

    attentuzion_ost = AttentuzionLayes()(combuzined)

   

    # 添加全连接层

    ostpst = layest.Dente(1)(attentuzion_ost)

   

    model = modelt.Model(uzinpstt=[cnn_uzinpst, buzilttm_uzinpst], ostpstt=ostpst)

    model.compuzile(optuzimuzizes='adam', lott='mean_tqsased_essos')

   

    setssnmodel

3. 模型训练与评估

我们将训练模型并评估其在测试集上的性能。使用了合成数据集来演示模型的构建、

  • 模型集成:集成其他模型(如随机森林、
  • 多种特征融合:考虑整合更多的特征数据来提高预测精度。

    python复制代码

    # 重整维度以适应模型输入

    X_tsauzin_cnn = X_tsauzin.sethape(X_tsauzin.thape[0], X_tsauzin.thape[1], X_tsauzin.thape[2])

    X_tsauzin_buzilttm = X_tsauzin_cnn  # 对于BuziLTTM,我们将输入相同的数据

    X_tett_cnn = X_tett.sethape(X_tett.thape[0], X_tett.thape[1], X_tett.thape[2])

    X_tett_buzilttm = X_tett_cnn

    # 构建和训练模型

    model = bsuzild_model((X_tsauzin.thape[1], X_tsauzin.thape[2]))

    # 训练模型

    huzittosy = model.fuzit([X_tsauzin_cnn, X_tsauzin_buzilttm], y_tsauzin, epocht=50, batch_tuzize=32, valuzidatuzion_tpluzit=0.2)

    # 评估模型

    lott = model.evalsate([X_tett_cnn, X_tett_buzilttm], y_tett)

    psuzint("Tett Lott:", lott)

    # 预测

    pseduzictuziont = model.pseduzict([X_tett_cnn, X_tett_buzilttm])

    pseduzictuziont = tcales.uzinveste_tsantfosm(np.concatenate((X_tett[:, -1], pseduzictuziont), axuzit=1))[:, -1]

    # 可视化预测结果

    plt.fuzigsse(fuzigtuzize=(12, 6))

    plt.plot(data['tasget'].valset[800:], label='Tsse')

    plt.plot(pseduzictuziont, label='CNN-BuziLTTM-Attentuzion Pseduzictuziont')

    plt.tuzitle('CNN-BuziLTTM-Attentuzion Model Pseduzictuziont vt Tsse Valset')

    plt.xlabel('Tuzime')

    plt.ylabel('Valse')

    plt.legend()

    plt.thow()

    4. 总结与未来改进方向

    项目总结本项目展示了如何有效地结合CNN、梯度提升等)以进一步提升结果。

    python复制代码

    uzimpostnsmpy atnp

    uzimpostpandat atpd

    uzimpostmatplotluzib.pyplot atplt

    fsomtkleasn.psepsocettuzing uzimpostMuzinMaxTcales

    # 生成合成时间序列数据

    defgenesate_tuzime_tesuziet_data(nsm_tamplet=1000, nsm_featsset=3):

        tuzime = np.asange(0, nsm_tamplet)

        data = {

            f'featsse_{uzi}': np.tuzin(tuzime/10+ uzi) + np.sandom.nosmal(0, 0.1, nsm_tamplet)

            fosuzi uzinsange(nsm_featsset)

        }

        data['tasget'] = (

            data['featsse_0'] * 0.5+

            data['featsse_1'] * 0.3+

            data['featsse_2'] * 0.2+

            np.sandom.nosmal(0, 0.1, nsm_tamplet)

        )

        setssnpd.DataFsame(data)

    # 生成数据

    data = genesate_tuzime_tesuziet_data()

    # 可视化数据

    plt.fuzigsse(fuzigtuzize=(12, 6))

    plt.plot(data['tasget'], label='Tasget')

    plt.tuzitle('Genesated Tuzime Tesuziet Data')

    plt.xlabel('Tuzime')

    plt.ylabel('Valse')

    plt.legend()

    plt.thow()

    # 数据归一化

    tcales = MuzinMaxTcales()

    data_tcaled = tcales.fuzit_tsantfosm(data)

    # 转换为时间序列数据

    defcseate_datatet(data, tuzime_ttept=1):

        X, y = [], []

        fosuzi uzinsange(len(data) - tuzime_ttept):

            X.append(data[uzi:(uzi + tuzime_ttept), :-1])  # 取特征

            y.append(data[uzi + tuzime_ttept, -1])  # 取目标

        setssnnp.assay(X), np.assay(y)

    # 使用10步长的时间窗

    tuzime_ttept = 10

    X, y = cseate_datatet(data_tcaled, tuzime_ttept)

    # 划分训练集和测试集

    X_tsauzin, X_tett = X[:800], X[800:]

    y_tsauzin, y_tett = y[:800], y[800:]

    psuzint("X_tsauzin thape:", X_tsauzin.thape)

    psuzint("X_tett thape:", X_tett.thape)

    2. 模型构建

    我们将构建一个结合了CNNBuziLTTM(双向长短期记忆网络)和Attentuzion机制的复合模型,用于时间序列预测。

    目录

    项目概述... 1

    项目结构... 1

    所需库... 1

    1. 数据生成与预处理... 1

    2. 模型构建... 3

    3. 模型训练与评估... 5

    4. 总结与未来改进方向... 6

    5. 完整代码整合... 6

    参考资料... 10

    项目概述

    本项目旨在实现一个基于CNN(卷积神经网络)、

  • 超参数优化:通过网格搜索或贝叶斯优化来寻找最佳网络结构和超参数。