只把伪影相关特征送入分类器
发布时间:2025-06-24 17:16:52 作者:北方职教升学中心 阅读量:751
前言:本篇博客总结 2018-2023年 通用AIGI(AI-Generated Image)检测相关研究工作。
核心思想:CLIP+MLP,不同的是,生成数据是由真实数据修改得到,修改方法包括频域掩膜/patch swapping/图像融合/颜色迁移,以此增强检测结果的泛化性。抹除图像的中频部分,重建得到伪重建图像,与原始图像的重建图像concate进行分类A Bias-Free Training Paradigm for More General AI-generated Image Detection. arXiv, 20241223.
Fabrizio Guillaro, Giada Zingarini, Ben Usman, Avneesh Sud, Davide Cozzolino, Luisa Verdoliva.
核心思想:PS:如有遗漏,欢迎评论区补充~
Fusing Global and Local Features for Generalized AI-Synthesized Image Detection. ICIP 2022
Yan Ju, Shan Jia, Lipeng Ke, Hongfei Xue, Koki Nagano, Siwei Lyu.
核心思想:使用ResNet,提全局特征和local patches的特征,融合之后分类检测
2023
GLFF: Global and Local Feature Fusion for AI-synthesized Image Detection. IEEE Transactions on Multimedia, 2023.
Yan Ju, Shan Jia, Jialing Cai, Haiying Guan, Siwei Lyu.
核心思想:ICIP 2022 那篇的扩充版本Learning on Gradients: Generalized Artifacts Representation for GAN-Generated Images Detection. CVPR, 2023.
Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Yunchao Wei.
核心思想:利用梯度信息,检测GAN生成的图像Towards Universal Fake Image Detectors that Generalize Across Generative Models. CVPR, 2023.
Utkarsh Ojha, Yuheng Li, Yong Jae Lee.
核心思想:使用CLIP提特征,然后基于此特征完成检测(1)分类器;(2)基于特征之间的距离De-fake: Detection and attribution of fake images generated by text-to-image generation models. CCS, 2023.
Zeyang Sha, Zheng Li, Ning Yu, Yang Zhang.
核心思想:主要利用提示词与对应图像的距离,设计简单分类器完成检测。FingerprintNet: Synthesized Fingerprints for Generated Image Detection. ECCV, 2022.
Yonghyun Jeong, Doyeon Kim, Youngmin Ro, Pyounggeon Kim, and Jongwon Choi.
核心思想:使用real生成synthesized图像,然后用于训练分类器Discovering Transferable Forensic Features for CNN-Generated Images Detection. ECCV 2022.
Singapore University of Technology and Design
核心思想:利用图像的颜色信息,进行针对性地数据增强BiHPF: bilateral high pass filters for robust deepfake detection. WACV, 2022.
Jeong, Y., Kim, D., Min, S., Joe, S., Gwon, Y., Choi, J.
核心思想:使用对抗训练的方式得到图像的伪影压缩图,证实artifact的存在,后使用双边高通滤波(像素域&频域)放大频域伪影送入分类器检测。使用颜色统计数据进行检测Whodunit: Detection and Attribution of Synthetic Images by Leveraging Model-specific Fingerprints
Alexander Wißmann, Steffen Zeiler, Robert M. Nickel, Dorothea Kolossa. MAD Workshop, 2024.
核心思想:使用DCT、Diffusion Noise Feature: Accurate and Fast Generated Image Detection. arXiv 2023.
Yichi Zhang, Xiaogang Xu.
核心思想:通过寻找diffusion模型生成图像中特有的噪声模式进行检测。基于SSIM比较的检测Organic or Diffused: Can We Distinguish Human Art from AI-generated Images?
Anna Yoo Jeong Ha, Josephine Passananti, Ronik Bhaskar, Shawn Shan, Reid Southen, Haitao Zheng, Ben Y. Zhao. CCS, 2024. 芝加哥大学(郑海涛)
核心思想:使用现成的在线工具或DIRE/DEFAKE判别艺术品是人工绘制还是模型生成Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis
Sergey Sinitsa, Ohad Fried. WACV, 2024
核心思想:training free,基于频域特征与两类参考图像的相似性. 测试集SD/Glide/MJ/DALLECLIPping the Deception: Adapting Vision-Language Models for Universal Deepfake Detection
Sohail Ahmed Khan, Duc-Tien Dang-Nguyen. ICMR, 2024.
核心思想:基于CLIP的Prompt tuning,Adapter,Fine-tuning,Linear Probing四种方式FIDAVL: Fake Image Detection and Attribution using Vision-Language Model. ICPR, 2024.
Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdelmalik Taleb-Ahmed, Abdenour Hadid.
核心思想:基于Q-Former和Vicuna 7bHarnessing the Power of Large Vision Language Models for Synthetic Image Detection
Mamadou Keita, Wassim Hamidouche, Hassen Bougueffa, Abdenour Hadid, Abdelmalik Taleb-Ahmed. arXiv, 2024.
核心思想:基于 BLIP 2 和 Q-Former 的分类器Bi-LORA: A Vision-Language Approach for Synthetic Image Detection
Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdenour Hadid, Abdelmalik Taleb-Ahmed. arXiv, 2024.
核心思想:同样是基于BLIP的检测SemGIR: Semantic-Guided Image Regeneration Based Method for AI-generated Image Detection and Attribution. ACM Multimedia, 2024.
Xiao Yu, Kejiang Chen, Kai Zeng, Han Fang, Zijin Yang, Xiuwei Shang, Yuang Qi, Weiming Zhang, Nenghai Yu
核心思想:few-shot场景,基于基于语义重建的参考图像生成,训练检测/溯源分类器Unsupervised Generative Fake Image Detector. TCSVT, 2024.
Tong Qiao, Hang Shao, Shichuang Xie, and Ran Shi.
核心思想:无监督学习CSC-Net: Cross-Color Spatial Co-Occurrence Matrix Network for Detecting Synthesized Fake Images
Tong Qiao, Yuxing Chen, Xiaofei Zhou, Ran Shi, Hang Shao, Kunye Shen, and Xiangyang Luo. TCDS, 2024.
核心思想:使用Cross-color空间共现矩阵,利用颜色信息进行检测。Forensic analysis of AI-compression traces in spatial and frequency domain
Sandra Bergmann, Denise Moussa, Fabian Brand, André Kaup, Christian Riess. PRL, 2024.
核心思想:像素域和频域特征的结合A guided-based approach for deepfake detection: RGB-depth integration via features fusion
Giorgio Leporoni, Luca Maiano, Lorenzo Papa, Irene Amerini. PRL, 2024.
核心思想:backbone提原始图像与深度图双路特征,接attention机制特征融合,后送入二分类器Enhancing the Generalization of Synthetic Image Detection Models through the Exploration of Features in Deep Detection Models
Alireza Hajabdollah Javaheri, Hossein Motamednia, Ahmad Mahmoudi-Azanveh. MVIP, 2024.
核心思想:使用DIRE得到重建误差,将其放到CNN分类器中进行检测Fake-GPT: Detecting Fake Image via Large Language Model. PRCV, 2024.
Yuming Fan, Dongming Yang, Jiguang Zhang, Bang Yang, and Yuexian Zou
核心思想:将图像表示成RGB数值序列作为输入,微调大语言模型Qwen,跨模态检测。相较于生成图像,真实图像对细微的扰动更加鲁棒,使用DINOv2提取扰动前和扰动后图像的特征Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery
Jonathan Gallagher, William Pugsley. arXiv 20240619 University of Waterloo
核心思想:使用像素域和频域的双路网络构建分类器Improving Interpretability and Robustness for the Detection of AI-Generated Images
Tatiana Gaintseva, Laida Kushnareva, German Magai, Irina Piontkovskaya, Sergey Nikolenko, Marting Benning,Serguei Barannikov, Gregory Slabaugh. arXiv, 20240621. UK/Russia/Japan/France
核心思想:Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models. arXiv, 20241113.
Chengdong Dong, Vijayakumar Bhagavatula, Zhenyu Zhou, Ajay Kumar. CMU/港城
核心思想:数据集包括Sora和神经渲染模型的图像Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models. arXiv, 20241128.
Chung-Ting Tsai, Ching-Yun Ko, I-Hsin Chung, Yu-Chiang Frank Wang, Pin-Yu Chen IBM/国立台湾大学
核心思想:改进RIGID,提出ContrastiveBlur更好检测facial image;MINDER降低noise biasAny-Resolution AI-Generated Image Detection by Spectral Learning. arXiv, 20241128.
Dimitrios Karageorgiou, Symeon Papadopoulos, Ioannis Kompatsiaris, Efstratios Gavves CERTH
核心思想:光谱学习 spectral learningFIRE: Robust Detection of Diffusion-Generated Images via Frequency-Guided Reconstruction Error. arXiv, 20241210.
Beilin Chu, Xuan Xu, Xin Wang, Yufei Zhang, Weike You, Linna Zhou. 北邮
核心思想:DIRE的衍生工作。–
AIGI检测相关博客如下:- 论文研读|AI生成图像检测发展历程及研究现状
- 针对AIGC检测的鲁棒性测试——常见攻击手段汇总
- 论文研读|以真实图像为参考依据的AIGC检测
- 论文研读|针对文生图模型的AIGC检测
目录
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
2018
- Detection of GAN-generated Fake Images over Social Networks. MIPR, 2018.
Francesco Marra, Diego Gragnaniello, Davide Cozzolino, Luisa Verdoliva.
核心思想:GAN discriminator,Steganalysis features,CNN networks
2019
Do GANs Leave Artificial Fingerprints? MIPR, 2019.
Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, Giovanni Poggi.
核心思想:基于GAN噪声残差相似度的检测Detecting and Simulating Artifacts in GAN Fake Images. WIFS, 2019.
Xu Zhang, Svebor Karaman, and Shih-Fu Chang.
核心思想:基于GAN上采样产生的的频域独特伪影Incremental learning for the detection and classification of GAN-generated images. WIFS, 2019.
Francesco Marra, Cristiano Saltori†, Giulia Boato and Luisa Verdoliva
核心思想:增量学习
2020
CNN-generated images are surprisingly easy to spot…for now. CVPR, 2020.
Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, Alexei A. Efros.
核心思想:将数据增强添加至检测分类器,全面测试泛化性。虚假重建这4类图像,使用对比学习损失训练分类器,得到更加准确的决策边界。Exposing the Fake: Effective Diffusion-Generated Images Detection (SeDID)
Ruipeng Ma, Jinhao Duan, Fei Kong, Xiaoshuang Shi, Kaidi Xu. ICML Workshops, 2024. 电子科大
核心思想:借鉴成员推断攻击的方法,利用重建生成的中间过程完成检测Breaking Semantic Artifacts for Generalized AI-generated Image Detection. NeurIPS, 2024.
Chende Zheng, Chenhao Lin, Zhengyu Zhao, Hang Wang, Xu Guo, Shuai Liu, Chao Shen
核心思想:cross-scene, patch shuffle(排除语义缺陷过拟合的影响) & patch based feature extractor + patch feature flattenFrequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Domain Learning. AAAI, 2024. (FreqNet)
Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, Yunchao Wei
核心思想:仅使用图像的高频特征完成检测,并针对性修改分类器,使其关注高频特征部分Leveraging Representations from Intermediate Encoder-Blocks for Synthetic Image Detection. ECCV, 2024. (RINE)
Christos Koutlis, Symeon Papadopoulos. CERTH
核心思想:使用编码器中间层的fine-grained特征,训练一个重要性评估模块,交叉熵损失+对比损失Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities. ECCV 2024.
Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, Rita Cucchiara. Italy
核心思想:以往的CLIP只关注到了全局特征的提取,本文使用对比学习(InfoNCE loss)对齐全局和局部区域的相似性,添加数据增强模块模拟图像处理操作。Leveraging Frequency Analysis for Deep Fake Image Recognition. ICML, 2020.
Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, Thorsten Holz.
核心思想:基于DFT频域分析,同上篇文章T-GD: Transferable GAN-generated Images Detection Framework. ICML 2020.
Hyeonseong Jeon, Youngoh Bang, Junyaup Kim, Simon S. Woo.
核心思想:使用教师——学生模型,self-training半监督学习On the use of Benford’s law to detect GAN-generated images
N. Bonettini, P. Bestagini, S. Milani, and S. Tubaro. ICPR, 2020.
核心思想:使用本福特定律相关特征+随机森林GAN-Generated Image Detection With Self-Attention Mechanism Against GAN Generator Defect. IEEE Journal of Selected Topics in Signal Processing, 2020.
Zhongjie Mi, Xinghao Jiang, Tanfeng Sun, and Ke Xu.
核心思想:自注意力机制
2021
Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis. IJCAI, 2021.
Yang He, Ning Yu, Margret Keuper, Mario Fritz
核心思想:使用去噪等图像再生成的方式得到残差,使用二分类器完成检测A closer look at fourier spectrum discrepancies for cnn-generated images detection. CVPR, 2021.
Keshigeyan Chandrasegaran, Ngoc-Trung Tra, Ngai-Man Cheung. SUTD
核心思想:频谱差异&最后一个上采样操作Are GAN generated images easy to detect? A critical analysis of the state-of-the-art. ICME, 2021.
D. Gragnaniello, D. Cozzolino, F. Marra, G. Poggi and L. Verdoliva.
核心思想:总结性文章Detection of GAN-Generated Images by Estimating Artifact Similarity. SPL, 2021.
Weichuang Li, Peisong He, et al.
核心思想:对于生成图像和真实图像分别构建参考特征,然后分别比较测试图像特征与二个参考特征,根据相似度分数进行检测
2022
Detecting Generated Images by Real Images. ECCV, 2022.
Bo Liu, Fan Yang, Xiuli Bi, Bin Xiao, Weisheng Li, Xinbo Gao.
核心思想:利用真实图像特有的噪声模式,设计简单分类器完成检测。功率谱密度(Power Spectral Density, PSD)(频域)以及自相关系数(像素域)训练分类器。Detecting Artificial Intelligence-Generated images via deep trace representations and interactive feature fusion. Image Fusion, 2024.
Qiang Xu, Xinghao Jiang, Tanfeng Sun, Hao Wang, Laijin Meng, Hong Yan.
核心思想:CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images
Jordan J. Bird, Ahmad Lotfi. IEEE Access, 2024.
核心思想:CNN分类,Grad-CAM对检测结果解释Enhancing Interpretability in AI-Generated Image Detection with Genetic Programming
Mingqian Lin, Lin Shang, Xiaoying Gao. ICDM Workshop, 2024.
核心思想:使用遗传编程提高检测方法的可解释性On the Exploitation of DCT-Traces in the Generative-AI Domain
Orazio Pontorno, Luca Guarnera, and Sebastiano Battiato. ICIP, 2024.
核心思想:使用DCT变换进行检测MDTL-NET: Computer-generated image detection based on multi-scale deep texture learning
Qiang Xu, Shan Jia, Xinghao Jiang, Tanfeng Sun, Zhe Wang, and Hong Yan. Expert Systems with Applications, 2024.
核心思想:设计多种网络堆叠,注意力机制等区分电脑生成的图像和真实图像Did You Note My Palette? Unveiling Synthetic Images Through Color Statistics
Lea Uhlenbrock, Davide Cozzolino, Denise Moussa, Luisa Verdoliva, and Christian Riess. IH&MMSec, 2024.
核心思想:本文指出Perceptual loss 的使用使得两类图像在亮度上比色度上差异更大。Text Modality Oriented Image Feature Extraction for Detecting Diffusion-based DeepFake
Di Yang, Yihao Huang, Qing Guo, Felix Juefei-Xu, Xiaojun Jia, Run Wang, Geguang Pu, and Yang Liu. arXiv 20240528 华东师范大学&新加坡南洋理工&纽约大学&武汉大学
核心思想:方法简称:TOFE,本工作只针对text-to-image模型,首先得到target image的text embedding,利用图像的high-level和low-level特征作为检测依据。Improving Synthetically Generated Image Detection in Cross-Concept Settings. MAD 2023.
Pantelis Dogoulis, Giorgos Kordopatis-Zilos, Ioannis Kompatsiaris, Symeon Papadopoulos
核心思想:使用图像质量评价,选择生成图像训练集的子集,与真实图像一起送入ResNetDepth map guided triplet network for deepfake face detection. Neural Networks, 2023.
Buyun Liang, Zhongyuan Wang, Baojin Huang, Qin Zou, Qian Wang, Jingjing Lian.
核心思想:使用triplet loss约束生成RGB图像特征和深度图特征,concat送入二分类器AI-Generated Image Detection using a Cross-Attention Enhanced Dual-Stream Network. APSIPA ASC, 2023.
Ziyi Xi, Wenmin Huang, Kangkang Wei, Weiqi Luo and Peijia Zheng.
核心思想:基于交叉注意力的双流检测网络;residual stream + content stream; cross-attention; feature fusionGeneralizable Synthetic Image Detection via Language-guided Contrastive Learning. arXiv, 2023.
Haiwei Wu, Jiantao Zhou, and Shile Zhang.
核心思想:设计图像文本对,基于对比学习损失微调CLIP的image encoder和text encoder,使得虚假图像特征更接近“fake photo”提示文本特征。解码重建图像一同送入ResNet进行分类LaRE^2: Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection
Yunpeng Luo, Junlong Du, Ke Yan, Shouhong Ding. CVPR, 2024.
核心思想:对DIRE的改进,基于重建损失,提高检测效率AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error
Jonas Ricker, Denis Lukovnikov, and Asja Fischer. CVPR, 2024.
核心思想:也是基于重建损失,自编码器,使用lpips值作为衡量指标Raising the Bar of AI-generated Image Detection with CLIP
Davide Cozzolino, Giovanni Poggi, Riccardo Corvi, Matthias Nießner, Luisa Verdoliva. CVPR Workshop, 2024.
核心思想:使用CLIP提特征,然后使用简单的SVM对特征进行分类。AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors. arXiv 2023.
You-Ming Chang, Chen Yeh, Wei-Chen Chiu, Ning Yu.
核心思想:针对指定的instruction“Is this photo real S*”,训练LLM tokenizer和Q-former tokenizer对S*的表示,并获得检测结果。Online Detection of AI-Generated Images. ICCV Workshop, 2023.
David C. Epstein, Ishan Jain, Oliver Wang, Richard Zhang.
核心思想:不仅探究了AIGC检测方法的泛化性,而且还测试了基于AI的图像篡改检测与定位的性能,实现了像素级的AIGC检测。真实重建、DIRE for Diffusion-Generated Image Detection. ICCV, 2023.
Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, Houqiang Li.
核心思想:利用真实图像与合成图像重建前后的残差差异On The Detection of Synthetic Images Generated by Diffusion Models. ICASSP, 2023
Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, Luisa Verdoliva…
核心思想:意大利LV团队做的,基于频域分析Exposing fake images generated by text-to-image diffusion models. PRL, 2023.
Qiang Xu, Hao Wang, Laijin Meng, Zhongjie Mi, Jianye Yuan, Hong Yan.
核心思想:基于注意力机制的特征提取和基于ViT的特征提取,baselines主要选取的是针对自然图像和电脑生成图像的检测方法。Fourier Spectrum Discrepancies in Deep Network Generated Images. NeurIPS, 2020.
Tarik Dzanic, Karan Shah, Freddie Witherden.
核心思想:基于DFT的高频信号,在高分辨率/低压缩率的情况下频谱特征更加容易区分。Detecting Images Generated by Deep Diffusion Models Using Their Local Intrinsic Dimensionality. ICCV Workshop, 2023.
Peter Lorenz, Ricard L. Durall, Janis Keuper.
核心思想:利用对抗样本检测中常用的Local Intrinsic Dimensionality手段,检测AIGC图像。Artifact Feature Purification for Cross-domain Detection of AI-generated Images
Zheling Meng, Bo Peng, Jing Dong, Tieniu Tan, Haonan Cheng. Computer Vision and Image Understanding, 2024.
核心思想:DFT频域&可学习的正交分解空域(特征显式纯化,把图像特征分解为伪影相关特征和伪影不相关特征)+互信息估计器增大两种特征之间的距离(特征隐式纯化)。虚假、解码噪声、Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions. CVPR, 2020.
Ricard Durall, Margret Keuper, Janis Keuper.
核心思想:up-convolution操作无法复制真实图像频谱,基于此发现设计简单的检测方法。
· Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks
Romeo Lanzino, Federico Fontana, Anxhelo Diko, Marco Raoul Marini, Luigi Cinque. CVPR Workshops, 2024.
核心思想:使用FFT频域特征和Local Binary Pattern纹理特征以及像素域三路构建分类器MaskSim: Detection of synthetic images by masked spectrum similarity analysis.
Li et al. CVPR Workshops, 2024. France/Brazil/Hongkong
核心思想:DistilDIRE: A Small, Fast, Cheap and Lightweight Diffusion Synthesized Deepfake Detection
Yewon Lim, Changyeon Lee, Aerin Kim, Oren Etzioni. ICML, 2024.
核心思想:对DIRE的改进,提高检测效率How to Trace Latent Generative Model Generated Images without Artificial Watermark?
Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma. ICML, 2024.
核心思想:使得重建误差最小的inverted latentDRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images ICML 2024
Baoying Chen et al. 阿里巴巴 & 中山大学
核心思想:首先得到真实图像和虚假图像各自的重建图像,然后基于真实、Detecting Generated Images by Real Images Only. arXiv 2023.
Xiuli Bi, Bo Liu, Fan Yang, Bin Xiao, Weisheng Li, Gao Huang, Pamela C. Cosman.
核心思想:把AIGC检测看成新颖点检测任务,训练一个基于正样本的单分类器。RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
Zhiyuan He, Pin-Yu Chen and Tsung-Yi Ho. arXiv, 20240530. 港中文
核心思想:training-free,基于相似度分数的检测。X-Transfer: A Transfer Learning-Based Framework for Robust GAN-Generated Fake Image Detection. arXiv 2023.
Lei Zhang, Hao Chen, Shu Hu, Bin Zhu, Xi Wu, Jinrong Hu, Xin Wang.
核心思想:一个主网络,一个辅助网络,三路损失,加权反向传播,训练分类器。Intriguing properties of synthetic images: from generative adversarial networks to diffusion models. CVPR Workshop, 2023.
Riccardo Corvi, Davide Cozzolino, Giovanni Poggi, Koki Nagano, Luisa Verdoliva.
核心思想:意大利LV团队做的,基于频域分析Synthbuster: Towards Detection of Diffusion Model Generated Images. IEEE Open Journal of Signal Processing, 2023.
Quentin Bammey.
核心思想:高通滤波得到图像残差,然后经傅立叶变换得到频谱图,送入分类器检测。只把伪影相关特征送入分类器。此外,提出Diffusion-generated Deepfake Detection dataset (D3 )数据集,包括三个版本SD+DeepFloyd IF模型生成的图像Zero-Shot Detection of AI-Generated Images. ECCV, 2024. (ZED)
Davide Cozzolino, Giovanni Poggi, Matthias Nieÿner, and Luisa Verdoliva
核心思想:基于coding cost的zero-shot检测,借鉴文本生成中对下一个token的预测Evolution of Detection Performance throughout the Online Lifespan of Synthetic Images. ECCV Workshops, 2024.
Dimitrios Karageorgiou, Quentin Bammey, Valentin Por cellini, Bertrand Goupil, Denis Teyssou, and Symeon Pa padopoulos.
核心思想:ZeroFake: Zero-Shot Detection of Fake Images Generated and Edited by Text-to-Image Generation Models. CCS 2024.
Zeyang Sha, Yicong Tan, Mingjie Li, Michael Backes, Yang Zhang
核心思想:真实图像和生成图像对于「对抗提示」的重建程度不同。Tiny Autoencoders are Effective Few-Shot Generative Model Detectors
Luca Bindini, Giulia Bertazzini, Daniele Baracchi, Dasara Shullani, Paolo Frasconi, and Alessandro Piva. WIFS, 2024. Italy
核心思想:Frequency Masking for Universal Deepfake Detection
Chandler Timm Doloriel, Ngai-Man Cheung. ICASSP 2024. SUTD
核心思想:提出一种数据增强策略,像素域random masking/patch masking+频域maskingMastering Deepfake Detection: A Cutting-edge Approach to Distinguish GAN and Diffusion-model Images. TOMM. 2024
Luca Guarnera, Oliver Giudice, Sebastiano Battiato. Italy
核心思想:层级多标签分类——real/synthestic➡️GAN/DM➡️which modelParents and Children: Distinguishing Multimodal Deepfakes from Natural Images. TOMM. 2024.
Roberto Amoroso, Davide Morelli, Marcella Cornia, Lorenzo Baraldi, Alberto Del Bimbo, Rita Cucchiara.
核心思想:1-real+N-fake;解藕语义信息和风格信息,提出COCOFake数据集Detecting Computer-Generated Images by Using Only Real Images
Ji Li, Kai Wang. ICMV, 2024. EI检索。GenDet: Towards Good Generalizations for AI-Generated Image Detection. arXiv 2023.
Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, Yunhe Wang.
核心思想:基于教师学生模型的异常检测
2024
Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection
Chuangchuang Tan, Huan Liu, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, Yunchao Wei. CVPR, 2024.
核心思想:基于上采样的痕迹特征,Neighboring Pixel Relationships(NPR)Shadows Don’t Lie and Lines Can’t Bend! Generative Models don’t know Projective Geometry…for now
Ayush Sarkar, Hanlin Mai, Amitabh Mahapatra, Svetlana Lazebnik, D.A. Forsyth, Anand Bhattad. CVPR, 2024.
核心思想:使用影射几何学的知识,比如影子,透视场和线段Forgery-aware Adaptive Transformer for Generalizable Synthetic Image Detection
Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Yao Zhao, Jingdong Wang. CVPR, 2024.
核心思想:image encoder 和 text encoder 结合的分类器FakeInversion: Learning to Detect Images from Unseen Text-to-Image Models by Inverting Stable Diffusion
George Cazenavette, Avneesh Sud, Thomas Leung Ben Usman. CVPR, 2024.
核心思想:原始图像、Disentangling Different Levels of GAN Fingerprints for Task-specific Forensics. Computer Standards & Interfaces, 2023.
Chi Liu, Tianqing Zhu, Yuan Zhao, Jun Zhang, Wanlei Zhou.
核心思想:分别提取空域和频域的特征,用于不同类型的取证任务。Rich and Poor Texture Contrast: A Simple yet Effective Approach for AI-generated Image Detection
Nan Zhong, Yiran Xu, Zhenxing Qian, Xinpeng Zhang. arXiv, 20240307. 复旦大学
核心思想:对于真实图像和AIGC图像的平滑块和纹理块之间的对比差异不同,设计分类器进行检测。Data-Independent Operator: A Training-Free Artifact Representation Extractor for Generalizable Deepfake Detection
Chuangchuang Tan, Ping Liu, RenShuai Tao, Huan Liu, Yao Zhao, Baoyuan Wu, Yunchao Wei. arXiv, 20240311. 北交
核心思想:Deepfake Detection without Deepfakes: Generalization via Synthetic Frequency Patterns Injection
Davide Alessandro Coccomini, Roberto Caldelli, Claudio Gennaro, Giuseppe Fiameni, Giuseppe Amato, Fabrizio Falchi. arXiv, 20240320. Italy
核心思想:Fake or JPEG? Revealing Common Biases in Generated Image Detection Datasets
Patrick Grommelt, Louis Weiss, Franz-Josef Pfreundt, Janis Keuper. arXiv, 20240328. Fraunhofer ITWM
核心思想:D^3 Scaling Up Deepfake Detection by Learning from Discrepancy
Yongqi Yang, Zhihao Qian, Ye Zhu, Yu Wu. arXiv, 20240406. 武汉大学
核心思想:Mixture of Low-rank Experts for Transferable AI-Generated Image Detection
Zihan Liu, Hanyi Wang, Yaoyu Kang, Shilin Wang. arXiv, 20240407. 上交
核心思想:Detecting Image Attribution for Text-to-Image Diffusion Models in RGB and Beyond
Katherine Xu, Lingzhi Zhang, Jianbo Shi. arXiv, 20240410. 宾夕法尼亚大学
核心思想:A Single Simple Patch is All You Need for AI-generated Image Detection
Jiaxuan Chen, Jieteng Yao, and Li Niu. arXiv, 20240420. 南航&上交
核心思想:对测试图像随机裁剪,选择最简单的patch进行resize之后送到SRM Conv中,接ResNet50完成检测,方法简称:SSPLet Real lmages be as a Judger, Spotting Fake lmages Synthesized with GenerativeModels
Ziyou Liang, Run Wang, Weifeng Liu, Yuyang Zhang, Wenyuan Yang, Lina Wang, Xingkai Wang. arXiv, 20240525. 武大&中山大学
核心思想:反复使用对比学习,提取出真实图像的同质特征,与虚假图像的特征拼接,送入检测器。